Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0620920200520050001
Experimental & Molecular Medicine
2020 Volume.52 No. 5 p.1 ~ p.1
Neural regulation of energy and bone homeostasis by the synaptic adhesion molecule Calsyntenin-3
Kim Sung-Jin

Jeong Yong-Taek
Jeong Se-Rok
Park Mun-Su
Go Hye-Sun
Kim Mi-Young
Seong Je-Kyung
Kim Ki-Woo
Seo Jeong-Taeg
Kim Chul-Hoon
Lee Ji-Hyun
Moon Seok-Jun
Abstract
Neuronal regulation of energy and bone metabolism is important for body homeostasis. Many studies have emphasized the importance of synaptic adhesion molecules in the formation of synapses, but their roles in physiology still await further characterization. Here, we found that the synaptic adhesion molecule Calsyntenin-3 (CLSTN3) regulates energy and bone homeostasis. Clstn3 global knockout mice show reduced body mass with improved leptin sensitivity and increased energy expenditure compared to their wild-type littermates. In addition, Clstn3 knockout mice show reduced marrow volume and cortical bone mass without alteration of trabecular bone microarchitecture. This reduced bone mass is not bone cell-autonomous because neither osteoblast- nor osteoclast-specific Clstn3 knockout mice show bone defects; similarly, in vitro cultures of both Clstn3 knockout osteoblasts and osteoclasts do not show any defects. These reduced body and bone mass phenotypes can be attributed instead to neuronal CLSTN3 because they are recapitulated by pan-neuronal but not sympathetic neuron-specific deletion of Clstn3. This study reveals novel physiological functions of neuronal Clstn3 as a key regulator of energy and bone homeostasis.
KEYWORD
Bone, Homeostasis
FullTexts / Linksout information
 
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø